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Several computational studies are currently being pursued that focus on

various aspects of representing the entire lifetime of the viscous trailing

vortex wakes generated by an aircraft. The computational regions are

indicated in the figure below, with the vicinity around the vortex-generating

aircraft designated as region A. The formation and subsequent near-wing

development of the leading-edge vortices formed by a delta wing are being

calculated at modest Reynolds numbers using a three-dimensional, time-

dependent Navier-Stokes code. The calculations exhibit realistic vortex

characteristics including behavior similar to vortex bursting at high angles

of attack. Another computer code has been developed to focus on the roll-up,

the trajectory, and the mutual interaction of the trailing vortices further

downstream from the wing (region B) using a two-dimensional, time-dependent

Navier-Stokes algorithm. This code has also been used to study the

modification of the vortex behavior due to ground-proximity effects and the

enhanced vortex decay induced by atmospheric temperature gradients. To

investigate the effect of a cross-wind ground shear flow on the drift and

decay of the far-field trailing vortices (region C), yet another code has been

developed that employs Euler equations along with matched asymptotic solutions

for the decaying vortex filaments. And finally, to simulate the conditions

far downstream after the onset of the Crow instability in the vortex wake

(region D), a full three-dimensional, time-dependent Navier-Stokes code has

been developed to study the behavior of interacting vortex rings.
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The formation and the subsequent near-wing development of the leading-
edge vortices formed by a delta wing are simulated by time-accurate finite-
difference solutions to the Navier-Stokes equations for three-dimensional,
incompressible flows with moderate Reynolds numbers. This particular aspect
of an extensive numerical study of vortex flow fields generated by aircraft
was chosen because a broad experimental data base allows thorough evaluation
of the numerical results. The discretized momentumequations are integrated
by an Euler-explicit, time-marching procedure that is first and second-order
accurate in time and space, respectively. The pressure field is computed
simultaneously by a simplified Jacobi method applied to the Poisson equation
for the pressure. Truly transient solutions are achieved by repeating the
iterative procedure as with time level until the flow is source free.

• Body-fitted coordinates

• Incompressible

• Time-dependent

• Explicit finite-difference
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COMPARISON WITH EXPERIMENT AT Q = 20.5 °

This figure shows a comparison of streamline patterns that were

determined from the velocity fields as steady-state solutions to the Navier-

Stokes equations (Re = 250 and Re = 1500) and to the Euler

equations (Re + _), and also those that were photographed in a water tunnel

(Re = 900). In all four cases the lateral deviations of the vortex

streamlines are quite similar. The circumferential velocities of the

experimentally observed vortices are judged to be greater than those in the

computed flow fields since the number of coils per axial length in the

photograph is higher than in the computations. The values for < give an

estimation of the additional numerical viscosity which has to be added to

numerically stabilize the finite-difference solutions of the Navier-Stokes

equations (Re = 1500) and of the Euler equations (Re ÷ _). The quantity < can

be interpreted as the reciprocal of a Reynolds number, giving the effective
I 1

Reynolds number during the computations as (_)effective = (R-e)nominal + K.
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v]_[_rl_' FJERrlr_ FOR 78.6% C_ORD e a = 20°5 °

This figure shows the projections of the velocities in planes which

intersect the delta wing perpendicularly at 78.6% of the root chord. The

aspect ratio is AR = I and the angle of attack is 20.5 degrees. The velocity

fields represent steady-state solutions to the Navier-Stokes equations (Re =

250 and Re = 1500) and to the Euler equations (Re + =). For Re = 250, no

additional numerical damping was necessary, whereas numerically stable

solutions for Re = 1500 and Re ÷ = were obtained only after additional

damping, indicated by <, has been introduced in the discretized momentum

equations. The vortex for Re = 250 lies higher and closer to the plane of

symmetry than in the other two cases. The velocity distributions for Re =

1500 and Re ÷ _ look quite similar if a small region in the neighborhood of

the wing is neglected where the different boundary conditions for viscous and

inviscid flows affect the solution. The small size of this region suggests

that for the computation of vortex flows around sharp-edged delta wings with

Re > 0(103 ) the friction forces may be neglected. To provide further evidence

for this conclusion, additional investigations are in progress.

Re=250 Re = 1500 _ =1.8.10 -_" Re--.. oo 'K =7Z,'10 -_
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TWO-DIMENSIONAL INITIAL VALUE PROBLE_

The governing equations are expressed in terms of the variables of stream

function (_) and vorticity (m). The equation of continuity can then be cast

as a Poisson equation and the curl of the momentum equation becomes the

vorticity transport equation, where t is time, v is the kinematic viscosity,

and v and w are the velocity components in the y and z directions,

respectively. The subscripts denote partial derivatives. The initial

vorticity distribution provides the initial condition and the boundary

condition for the unbounded flow is based on the fact that the vorticity

distribution is confined to one area and decays exponentially with distance

from that area. The exact solution for the Poisson equation is given by the

Biot-Savart law. However, the computation of the boundary conditions using

this law directly is extremely expensive. A considerable time savings can be

achieved by expanding the Biot-Savart integral in a power series in terms of

vorticity. The coefficients of the terms in the power series are moments of

the vorticity distribution. Previous studies have shown that the first moments

and several linear combinations of higher moments are time invariant. These

results can be used to determine the boundary condition for the numerical

calculations and are also used in checking the accuracy of the numerical

solutions as they proceed.

Incompressible, Navier-Stokes Eqns

Cont inui ty: V-V = 0 => A # = -e (Poi sson eqn)

Vortici ty

Transport : wt +v _y+ W Wz = 1) A W

=

.(x, t)

Boundary
a moment

0 exponent i a l l y as x -, co

values of # are evaluated using

expansion of the Biot-Savart law
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FLOWCSART

1 •

2•

3•

4.

5.

The basic algorithm performed by the program is outlined below:

The volume integrals are evaluated using Simpson integration over the

computational domain• The time varying integrals are evaluated at each

time step, while the time-invariant integrals are evaluated initially and

then only periodically to monitor the accuracy of the solution.

The results from step one are used to obtain the expansion coefficients

which are in turn used to determine values of _ at the boundary.

A fast Poisson solver is used to determine the values of _ in the interior

of the computational domain. The solver currently in use is a direct

method developed by the National Center for Atmospheric Research (NCAR).

The method uses a finite-difference formulation and is second-order

accurate in the spatial directions.

The velocity field is obtained by using second-order centered differences

to obtain the curl of 4. The velocity values are written over the stream

function values to minimize the required computer storage.

The vorticity field is advanced in time by using a finite-difference

representation of the vorticity transport equation. The program currently

uses the Dufort-Frankel method (ref. I) for solving the vorticity

transport equation; this explicit method is accurate to

O[(At) 2, (_xi)2,9(_t/Axi)2; i = I, 2, 3]. Explicit methods for solving

the vorticity transport equation appear to be more appropriate than

implicit methods in this case.

ICalculate #

ISpecify Wol

 imo-,nvorioo l
IEvaluate Time-Varying Moments

$
on the boundary I

$
ISolve for interior #k .... _Output w,#l

$
ICalculate ? = ? x

$
Vortieity Transport Eqn
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EVOLUTION OF _DRTICIT¥ FOR SPANLOAD OF TRANSPORT IN LANDING

CONFIGURATION

o 5

Z/S

o

This figure displays the resultant contours of vorticity for successive

planes downstream of the wing. The calculations were performed at a Reynolds

number (F/9) of 20,000. The results are shown for only the right half-plane

since the flow is assumed to exhibit mirror symmetry about the line y = 0.

Since the computational grid follows the vortices, the projection of the wing

trailing edge appears as the horizontal line that rises in successive

planes.

The example is for a spanload distribution like that obtained with a

transport aircraft using flaps on landing or takeoff. The resulting initial

vorticity distribution has been simplified by distributing the vorticity along

a horizontal line, unlike the more complicated positions expected in

reality. Note the negative vorticity values associated with the reduction in

lift around the fuselage-wing junction.

Successive frames illustrate the evolution of the vortex system in time

and demonstrate the ultimate merging of the vortices from the wing tip and

flap tip. A movie generated from these calculations has been useful in

observing the progress of these vortex interactions.
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INTERACTION OF DECAYING TRAILING _K)RTICES

IN SPARWISE SHEAR FLO_

The drift of trailing vortices in a crosswind near to the ground is

modeled by an unsteady, two-dimensional, rotational flow field with a

concentration of large vorticity in spots having a finite but small effective

size and finite total strength. _ne problem is analyzed by a combination of

the method of matched asymptotic analyses for the decay of the vortical spots

and the Euler solution for the unsteady rotational flow. Using the method of

averaging, a numerical scheme is developed in which the grid size and time

step depend only on the length and velocity scales of the background flow and

are independent of the effective core size of a vortical spot. The core size

can be much smaller than the grid size while the peak velocity in the core is

inversely proportional to the spot size. Numerical results are presented to

demonstrate the strong interaction between the trajectories of the vortical

spots and the redistribution of vorticity in the background flow field (ref.

2).
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COORDINATE TRANSFORMATION

The problem of a steady far-wake vortex can be simplified by reducing the

problem to an equivalent unsteady two-dimensional problem in a plane normal to

the flight direction. This simplification is performed by changing the

coordinate z to a time variable t using z=z*-W t, where z is stationary and z*

points in the downstream direction and moves with the airplane at

velocity W (see figure). This assumption ignores the streamwise curvature of

the trailing vortex filaments, their initiation at the trailing edge, and the

variation of the velocity parallel to the z axis. Mathematically, we assume

that d/dz << d/dx and d/dy with x,y as the span and vertical direction,

respectively. In the x-y plane at a station z, the trailing vortices are

represented by "vortex spots" of small effective size inside of which there is

a strong vorticity distribution with finite total strength.

This model is employed to study the drift and decay of farfield trailing

vortices (vortical spots) in a cross wind (a spanwise shear flow) near the

ground.
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EFFECT OF _K)RTEX STRENGTH OR TRAJECTORY

To gain a qualitative understanding of the interaction of vortical spots

with a background shear flow, we study first the case of a single vortical

spot. This figure shows the trajectories of a single concentrated decaying

vortical spot of various strengths submerged in a background shear flow. The

initial vertical position of the spot is at y=1 and the initial background

shear flow is chosen as Uo(Y)=1-e-Y. The results show that the vortical spots

with positive circulation drift downstream and upward while the vortical spots

with negative circulation drift downstream and downward but eventually turn

backward (t>t*). This phenomenon is more pronounced as the strength of the

vortical spot increases. To explain this phenomenon we consider the case of a

single vortical spot with F>O. The disturbed flow moves downward behind the

spot, x<X, and upward ahead of the spot, x>X. For an initial background

vorticity _0 with _o'(y) >0, the disturbed flow increases the vorticity behind

the spot and decreases the vorticity ahead of it, i.e., _>0 for x<X

and _<0 for x>X. The background vorticity variation _ in turn induces an

upward motion of the vortical spot for F>O. From similar arguments, we can

explain that the background vorticity variation _ will induce a downward

motion of the vortical spot with F<O. The reason that a vortical spot of

negative strength turns around and drifts upstream as it gets closer and

closer to the ground can be attributed to the decrease of the contribution of

the background shear flow to the forward velocity of the spot and to the

increase of the induced velocity by the image of the vortical spot with

respect to the ground, y=O. It should be pointed out here once more that the

vortical spot will drift horizontally when the background shear flow is either

a uniform flow (_0=0) or a constant shear flow (_o=COnstant) and there will be

no change in the background flow, _50.
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VORTICAL PAIRS SIMULATING TRAILING VORTICES

IN A CROSSWIND

The trailing vortex wakes far downstream of an aircraft are modeled by a

simple vortex pair whose vorticity distributions are concentrated and are

centered at (¥_(0),Yk(0)) with strength YF and effective vortical size 6(0).

The goal of the following numerical examples is to simulate the interaction of

the decaying trailing vortical pairs subjected to a cross-flow (spanwise)

ground shear. The background shear flow used in the examples is an

exponential profile.

In order to find out when we have to use the shear layer solution, we

studied the trajectories of a pair of vortices in a shear layer for different

initial vortex heights. The YR,min approaches an asymptotic value of 2.6 when

Yk(O) is greater than 7.0. This means that when the vortex spots are above

y=7, they are far above the shear layer and the interaction with the shear

layer is negligible. The corresponding trajectories (in real spanwise

positions) of the vortical pair, starting at different heights Yk(0)=I,2,3,4,5

in the shear layer, are displayed in this figure to show that the trajectories

of the vortical spots are sensitive to the starting height, i.e., the altitude

of the airplane relative to the thickness of the shear layer.

EFFECT OF DIFFERENT INITIAL POSITIONS

Some vortex strength

. ldownwind" vortices
/

%%
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N_VI_-STOKES_TIONS FOR _STT_DYw

TB_EE-DINENSION&L _K)RTEX-DONINATED FLONS

A finite-difference Navier-Stokes code has been developed for calculating

unsteady, three-dimensional, vortex-dominated flows in unbounded fluid

domains. The algorithm uses an improved boundary condition specification

which allows the unbounded nature of the physical problem to be represented on

a finite computational domain. This boundary condition specification permits

the efficient computation of flows due to closed ring-like vortical tubes or

structures. These structures are important elements in fluid flows such as

free jets, atmospheric turbulence, and the far-field wakes of aircraft, and

studies of their interaction may aid in an understanding of complex vortical

fluid flows.

The primary variables used in the computations are the vorticity and the

vector velocity potential, which is defined as a divergence-free vector field

whose curl yields the velocity. This definition of the vector velocity

potential automatically satisfies the incompressible continuity equation, and

for unbounded flow relates the vector potential directly to the vorticity

through an integral relationship (the vector Poisson integral). In theory,

this integral relationship could be used to yield the velocity directly from

the vorticity, but the numerical evaluation of the Poisson integral throughout

the computational domain is very time consuming. The current algorithm avoids

the expense of directly computing the integral by approximating the integral

values at the domain boundary with a series representation, and then using

these values along with a fast Poisson solver in the domain interior. This

technique yields a fast, accurate solution for the velocity field of the

unbounded-domain physical problem with a finite computational domain.

Incompressible, Laminar Flow

Cont i nui ty" ?.9 = 0 => A A = -E (Poi sson eqn)

Vorticity

Transport •

=

B.C. _(_',t) -_ 0 exponentially as x ÷ _o

Boundary values of A are evaluated using

a moment expansion of the Biot-Savart law
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BOUNDARY CONDITION _'CURACY

The accuracy and efficiency of two approximate vector-potential boundary

condition methods were evaluated by comparing them with an exact solution that

used Poisson integral evaluations to generate the boundary conditions. The

two approximate methods were the truncated series method mentioned in the

previous figure and a method that enforces zero normal velocity at the
+

boundary by setting A to zero at the boundary.

The vorticity distribution chosen for the boundary condition checks is

shown in the upper right figure as a vorticity-magnitude isosurface. This

distribution represents two Gaussian-core vortex rings with equal strengths,

radii, and core diameters whose axes of symmetry lie in the x-y plane and

cross the x-axis at an angle of ±22.5 ° . The centers of the rings lie on the

y-axis at ±1.5 units, where a unit of length is the toroidal radius of each

ring. _ne effective core radius (the radius at which the vorticity magnitude

has fallen to I/e of the maximum vorticity magnitude) is 0.5. The computa-

tional domain is a cube with edges of length 8 centered about the origin.

This domain size is the practical minimum cubical size that will still enclose

both vortical rings and thus represents a "worst-case" test condition.

The three boundary condition figures show contour plots of the magnitude

of _ in the x-y plane of the domain for each of the three boundary condition

methods. It is evident from the figures that the finite solution domain

affects both the series method and zero normal-velocity method solutions,

although the series solution is not affected to nearly as great an extent.

For slightly larger domains the series method solution closely approximates

the Poisson method solution, whereas the global character of the zero normal-

velocity solution is altered by the closed boundary.

POISSONINTEGRALB.C.'S VORTICITYDISTRIBUTION

SERIES B-C.'S

x

I_I= o B.C.'S
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MERGER OF %_)RTEX RING PAIR

This figure shows the oblique collision, merging, and deformation of two

circular, Gaussian-core vortex rings. The first two plots show representative

isosurfaces of the initial vorticity and vector velocity potential magnitudes,

respectively, and the last four plots show the time development of the vector

potential isosurface. The intersections on the surfaces represent grid point

locations, and the cube represents the computational domain boundary. The

rings collide and merge to form a single distorted oblong ring, which

continues to deform until the major and minor axes have switched their

orientation. This behavior has been observed experimentally, and work is

currently in progress to further correlate the code results with experiment.

It is hoped that this algorithm will be useful in understanding and analyzing

the physics of vortex-dominated flows.
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